Home
Class 12
MATHS
If a, x1, x2, …, xk and b, y1, y2, …, yk...

If `a, x_1, x_2, …, x_k and b, y_1, y_2, …, y_k` from two A. Ps with common differences `m and n` respectively, the the locus of point `(x, y)`, where`x= (sum_(i=1)^k x_i)/k`and `y= (sum_(i=1)^k yi)/k` is: (A) `(x-a) m = (y-b)n` (B) `(x-m) a= (y-n) b` (C) `(x-n) a= (y-m) b` (D) `(x-a) n= (y-b)m`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If a ,b ,c are in G.P. and x ,y are the arithmetic means of a ,ba n db ,c respectively, then prove that a/x+c/y=2a n d1/x+1/y=2/b

If y=(x-a)^(m)(x-b)^(n) , prove that (dy)/(dx)=(x-a)^(m-1)(x-b)^(n-1)[(m+n)x-(an+bm) ].

If a, b, c are in G.P., x and y are the A.M.'s of a, b and b, c respectively, then prove that: (i)(a)/(x)+(c)/(y)=2" "(ii) (1)/(x)+(1)/(y)=(2)/(b)

If y=a x^(n+1)+b x^(-n) , then x^2(d^2y)/(dx^2)= n(n-1)y (b) n(n+1)y (c) n y (d) n^2y

If a = x^(m + n) . Y^(l), b = x^(n + l). Y^(m) and c = x^(l + m) . Y^(n) , Prove that : a^(m-n) . b^(n - 1) . c^(l-m) = 1

If x\ a n d\ y are two co-primes, then their LCM is (a) x y (b) x+y (c) x/y (d) 1

If x+y=k is normal to y^2=12 x , then k is (a)3 (b) 9 (c) -9 (d) -3

A rectangle A B C D has its side A B parallel to line y=x , and vertices A ,Ba n dD lie on y=1,x=2, and x=-2, respectively. The locus of vertex C is x=5 (b) x-y=5 y=5 (d) x+y=5

If (x+y)^3-\ (x-y)^3-6y\ (x^2-y^2)=\ k y^3, then k= (a)1 (b) 2 (c) 4 (d) 8

If x,y are positive real numbers and m, n are positive integers, then prove that (x^(n) y^(m))/((1 + x^(2n))(1 + y^(2m))) le (1)/(4)