Home
Class 12
MATHS
Find the equation of the circle passing ...

Find the equation of the circle passing through the point of intersection of the circles
`x^(2)+y^(2)-6x+2y+4=0,x^(2)+y^(2)+2x-4y-6=0` and with its centre on the line y=x.

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation of the circle passing through the point of intersection of the circles x^2 + y^2 - 6x + 2y + 4 = 0 and x^2 + y^2 + 2x - 6y - 6=0 and having its centre on y=0 is : (A) 2x^2 + 2y^2 + 8x + 3 = 0 (B) 2x^2 + 2y^2 - 8x - 3 = 0 (C) 2x^2 + 2y^2 - 8x + 3 = 0 (D) none of these

The equation of the line passing through the points of intersection of the circles 3x^2 +3y^2-2x + 12y-9=0 and x^2+y^2+6x+2y-15=0 is

The equation of the circle which passes through the points of intersection of the circles x^(2)+y^(2)-6x=0 and x^(2)+y^(2)-6y=0 and has its centre at (3/2, 3/2), is

Find the equation of the circle passing through the points of intersections of circles x^2+y^2+6x+4y-12=0, x^2+y^2-4x-6y-12=0 , and having radius sqrt13 .

The equation of the circle passing through (1,2) and the points of intersection of the circles x^2+y^2-8x-6y+21=0 and x^2+y^2-2x-15=0 is

Find the equation of the circle passing through the intersection of the circles x^2 + y^2-4 = 0 and x^2+y^2-2x-4y+4=0 and touching the line x + 2y=0

Find the equation of the circle passing through (-2,14) and concentric with the circle x^(2)+y^(2)-6x-4y-12=0

Find the equation of the circle passing through the points of intersection of the circles x^2 + y^2 - 2x - 4y - 4 = 0 and x^2 + y^2 - 10x - 12y +40 = 0 and whose radius is 4.

Find the equation of the circle passing through the point of intersection of the lines x+3y=0\ a n d\ 2x-7y=0 and whose centre is the point of intersection of the lines x+y+1=0\ a n d\ x-2y+4=0.

Find the equations of the circles passing through the point (-4,3) and touching the lines x+y=2 and x-y=2