Home
Class 12
MATHS
Find the locus of the mid-point of the c...

Find the locus of the mid-point of the chords of the circle `x^2 + y^2 + 2gx+2fy+c=0` which subtend an angle of `120^0` at the centre of the circle.

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of the mid-points of the chords of the circle x^2+ y^2-2x-4y - 11=0 which subtends an angle of 60^@ at center is

Find the locus of the midpoint of the chord of the circle x^2+y^2-2x-2y=0 , which makes an angle of 120^0 at the center.

The locus of the midpoint of the chord of the circle x^(2)+y^(2)-2x-2y-2=0 which makes an angle of 120^(@) at the centre is

Find the locus of the midpoint of the chords of the circle x^2+y^2=a^2 which subtend a right angle at the point (0,0)dot

Find the locus of the midpoint of the chords of the circle x^2+y^2-ax-by=0 which subtend a right angle at the point (a/2 ,b/2)dot is

Find the locus of the midpoint of the chords of the circle x^2+y^2=a^2 which subtend a right angle at the point (c ,0)dot

The locus of mid-points of the chords of the circle x^2 - 2x + y^2 - 2y + 1 = 0 which are of unit length is :

The equation of the locus of the mid-points of chords of the circle 4x^2 + 4y^2-12x + 4y +1= 0 that subtends an angle of (2pi)/3 at its centre is x^2 + y^2-kx + y +31/16=0 then k is

The equation of the locus of the mid-points of chords of the circle 4x^(2) + 4y^(2) -12x + 4y + 1 = 0 that substend an angle (2pi)/(3) at its centre, is

The locus of the mid-points of the chords of the circle of lines radiùs r which subtend an angle pi/4 at any point on the circumference of the circle is a concentric circle with radius equal to (a) (r)/(2) (b) (2r)/(3) (c) (r )/(sqrt(2)) (d) (r )/(sqrt(3))