Home
Class 12
MATHS
Angle of intersection of two circle havi...

Angle of intersection of two circle having distance between their centres `d` is given by : (A) `cos theta = (r_1^2 + r_2^2 - d)/(2r_1^2 + r_2^2)` (B) `sec theta = (r_1^2 + r_2^2 + d^2)/(2r_1 r_2)` (C) `sec theta = (2r_1 r_2)/(r_1^2 + r_2^2 - d^2` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If r/(r_1)=(r_2)/(r_3), then (a) A=90^0 (b) B=90^0 (c) C=90^0 (d) none of these

Prove that (r_(1+r_2))/1=2R

The total surface area of frustum shaped glass tumbler is (r_1 gt r_2) (a) pi r_1 l + pi r_2 l (b) pi l (r_1 + r_2) + pi (r_2)^2 (c) 1/3 pi h ( (r_1)^2 + (r_2)^2 + r_1r_2 ) (d) sqrt (h^2 + (r_1 - r_2)^2)

The total surface area of frustum shaped glass tumbler is (r_1 gt r_2) (a) pi r_1 l + pi r_2 l (b) pi l (r_1 + r_2) + pi (r_2)^2 (c) 1/3 pi h ( (r_1)^2 + (r_2)^2 + r_1r_2 ) (d) sqrt (h^2 + (r_1 - r_2)^2)

Prove that : (r_1+r_2) tan (C )/(2) = (r_3- r) cot ( C)/(2) = c

The circles having radii r_1a n dr_2 intersect orthogonally. The length of their common chord is (2r_1r_2)/(sqrt(r1^2+r2^2)) (b) (sqrt(r1^2+r2^2))/(2r_1r_2) (r_1r_2)/(sqrt(r1^2+r1^2)) (d) (sqrt(r1^2+r1^2))/(r_1r_2)

If the sum of the areas of two circles with radii r_1 and r_2 is equal to the area of a circle of radius r , then r_1^2 +r_2^2 (a) > r^2 (b) =r^2 (c)

Show that 16R^(2)r r_(1) r _(2) r_(3)=a^(2) b ^(2) c ^(2)

If a=sum_(r=1)^oo(1/r)^2, b=sum_(r=1)^oo1/((2r-1)^2), then a/b= (A) 5/4 (B) 4/5 (C) 3/4 (D) none of these

Value of 1/(r_(1)^2)'+ 1/(r_(2)^2)+ 1/(r_(3)^2)+ 1/(r_()^2) is :