Home
Class 12
MATHS
If the chord of contact of the tangents ...

If the chord of contact of the tangents from a point on the circle `x^2 + y^2 = a^2` to the circle `x^2 + y^2 = b^2` touch the circle `x^2 +y^2 = c^2`, then the roots of the equation `ax^2 + 2bx + c = 0` are necessarily. (A) imaginary (B) real and equal (C) real and unequal (D) rational

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If the chord of contact of the tangents drawn from a point on the circle x^2+y^2=a^2 to the circle x^2+y^2=b^2 touches the circle x^2+y^2=c^2 , then prove that a ,b and c are in GP.

If the chord of contact of tangents from a point (x_1, y_1) to the circle x^2 + y^2 = a^2 touches the circle (x-a)^2 + y^2 = a^2 , then the locus of (x_1, y_1) is

If two distinct chords drawn from the point (a, b) on the circle x^2+y^2-ax-by=0 (where ab!=0) are bisected by the x-axis, then the roots of the quadratic equation bx^2 - ax + 2b = 0 are necessarily. (A) imaginary (B) real and equal (C) real and unequal (D) rational

If the chord of contact of tangents from a point P(h, k) to the circle x^(2)+y^(2)=a^(2) touches the circle x^(2)+(y-a)^(2)=a^(2) , then locus of P is

If the polar of a point (p,q) with respect to the circle x^2 +y^2=a^2 touches the circle (x-c)^2 + (y-d)^2 =b^2 , then

If ax^3+bx^2+cx+d has local extremum at two points of opposite signs then roots of equation ax^2+bx+c=0 are necessarily (A) rational (B) real and unequal (C) real and equal (D) imaginary

Tangents drawn from (2, 0) to the circle x^2 + y^2 = 1 touch the circle at A and B Then.

(prove that) If the polar of the points on the circle x^(2) + y ^(2) = a^(2) with respect to the circle x^(2) + y^(2) = b^(2) touches the circle x^(2) + y^(2) = c^(2) then prove that a, b, c, are in Geometrical progression.

If the chord of contact of the tangents from the point (alpha, beta) to the circle x^(2)+y^(2)=r_(1)^(2) is a tangent to the circle (x-a)^(2)+(y-b)^(2)=r_(2)^(2) , then

The length of the chord of contact of the tangents drawn from the point (-2,3) to the circle x^2+y^2-4x-6y+12=0 is: