Home
Class 12
MATHS
A(1/(sqrt(2)),1/(sqrt(2))) is a point on...

`A(1/(sqrt(2)),1/(sqrt(2)))` is a point on the circle `x^2+y^2=1` and `B` is another point on the circle such that are length `A B=pi/2` units. Then, the coordinates of `B` can be (a) `(1/(sqrt(2)),-1/sqrt(2))` (b) `(-1/(sqrt(2)),1/sqrt(2))` (c) `(-1/(sqrt(2)),-1/(sqrt(2)))` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The line y=x is tangent at (0, 0) to a circle of radius 1. The centre of circle may be: (a) (1/(sqrt(2)),-1/(sqrt(2))) (b) (-1/2,1/2) (c) (1/2,-1/2) (d) (-1/(sqrt(2)),1/(sqrt(2)))

Complete solution set of tan^2(sin^(-1)x)>1 is (a) (-1,-1/(sqrt(2)))uu(1/(sqrt(2)),1) (b) (-1/(sqrt(2)),1/(sqrt(2)))~{0} (c) (-1,1)~{0} (d) none of these

lim_(y->o)(sqrt(1+sqrt(1+y^(4)))-sqrt(2))/(y^(4))= (a) (1)/(4sqrt(2)) (b) (1)/(2sqrt(2)) (c) (1)/(2sqrt(2)(1+sqrt(2))) (d) does not exist

The value of ("lim")_(xvec2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)i s (a) 1/(8sqrt(3)) (b) 1/(4sqrt(3)) (c) 0 (d) none of these

The value of sin(1/4sin^(-1)((sqrt(63))/8)) is (a) 1/(sqrt(2)) (b) 1/(sqrt(3)) (c) 1/(2sqrt(2)) (d) 1/(3sqrt(3))

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))-(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))+(1)/(sqrt(2)+1)-(1)/(sqrt(2)-1)

The image of the centre of the circle x^2 + y^2 = 2a^2 with respect to the line x + y = 1 is : (A) (sqrt(2), sqrt(2) (B) (1/sqrt(2) , sqrt(2) ) (C) (sqrt(2), 1/sqrt(2)) (D) none of these

1/(sqrt(9)-\ sqrt(8)) is equal to: (a) 3+2sqrt(2) (b) 1/(3+2sqrt(2)) (c) 3-2sqrt(2) (d) 3/2-\ sqrt(2)

The point A(2,1) is translated parallel to the line x-y=3 by a distance of 4 units. If the new position A ' is in the third quadrant, then the coordinates of A ' are (A) (2+2sqrt(2),1+2sqrt(2) (B) (-2+sqrt(2),-1-2sqrt(2)) (C) (2-2sqrt(2) , 1-2sqrt(2)) (D) none of these