Home
Class 12
MATHS
If curves a1 x^2 + 2h1 xy + b1 y^2 - 2g1...

If curves `a_1 x^2 + 2h_1 xy + b_1 y^2 - 2g_1 x - 2f_y y + c = 0` and `a_2 x^2 - 2h_2xy + (a_2 + a_1 - b_1) y^2 - 2g_2 x - 2f_2 y + c = 0` intersect in four concyclic points `A, B, C and D`. and `H` be the point `((g_1+g_2)/(a_1 + a_2), (f_1 + f_2)/(a_1 + a_2))`, then `(5HA^2 + 7HB^2 + 8HC^2)/(HD^2) = ..`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Two conics a_1x^2+2h_1xy + b_1y^2 = c_1, a_2x^2 + 2h_2xy+b_2y^2 = c_2 intersect in 4 concyclic points. Then

If the equation of the locus of a point equidistant from the points (a_1, b_1) and (a_2, b_2) is (a_1-a_2)x+(b_1-b_2)y+c=0 , then find the value of c .

If the equation of the locus of a point equidistant from the points (a_1,b_1) and (a_2,b_2) is (a_1-a_2)x+(b_2+b_2)y+c=0 , then the value of C is

If A_1 and A_2 are two AMs between a and b then (2A_1 -A_2) (2A_2 - A_1) =

If the origin lies in the acute angle between the lines a_1 x + b_1 y + c_1 = 0 and a_2 x + b_2 y + c_2 = 0 , then show that (a_1 a_2 + b_1 b_2) c_1 c_2 lt0 .

If G_1 is the mean centre of A_1,B_1,C_1 and G_2 that of A_2,B_2,C_2 then show that vec(A_1A_2)+vec(B_1B_2)+vec(C_1C_2)=3vec(G_1G_2)

If b , c , B are given and b < c ,prove that cos((A_1-A_2)/2)=(csinB)/b

If a_1,a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of (1+x)^n , then prove that: (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot

If a_1,a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of (1+x)^n , then prove that: (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot

If the points (a_1, b_1),\ \ (a_2, b_2) and (a_1+a_2,\ b_1+b_2) are collinear, show that a_1b_2=a_2b_1 .