Home
Class 12
MATHS
A hyperbola having the transverse axis o...

A hyperbola having the transverse axis of length `2sintheta` is confocal with the ellipse `3x^2+4y^2=12` . Then its equation is `x^2cos e c^2theta-y^2sec^2theta=1` `x^2sec^2theta-y^2cos e c^2theta=1` `x^2sin^2theta-y^2cos^2theta=1` `x^2cos^2theta-y^2sin^2theta=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

A hyperbola, having the transverse axis of length 2sin theta , is confocal with the ellipse 3x^2 + 4y^2=12 . Then its equation is

Prove: cos e c^2theta+sec^2theta=cos e c^2thetasec^2theta

Range of f(theta)=cos^2theta(cos^2theta+1)+2sin^2theta is

If sintheta+sin^2theta=1 , prove that cos^2theta+cos^4theta=1

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

(2 sin theta*cos theta - cos theta)/(1-sin theta+sin^2 theta-cos^2 theta) = cot theta

Prove the following identity: (1/(sec^2theta-cos^2theta)+1/(cos e c^2theta-sin^2theta))sin^2thetacos^2theta=(1-sin^2thetacos^2theta)/(2+sin^2thetacos^2theta)

Prove the following identity: (1/(sec^2theta-cos^2theta)+1/(cos e c^2theta-sin^2theta))sin^2thetacos^2theta=(1-sin^2thetacos^2theta)/(2+sin^2thetacos^2theta)

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

Prove that (sin^(2)theta+cos^(2)theta)/(sec^(2)theta-tan^(2)theta)=1