Home
Class 12
MATHS
If the line 2x+3y=1 touches the parabola...

If the line `2x+3y=1` touches the parabola `y^2=4a(x+a)` then the length of its latusrectum `8/9` 2. `8/(13)` 3. 4 4. `4/9` 5. `4/(13)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

The line 4x+6y+9 =0 touches the parabola y^(2)=4ax at the point

if the line 4x +3y +1=0 meets the parabola y^2=8x then the mid point of the chord is

If the parabola y^(2)=4ax passes through (3, 2). Then the length of its latusrectum, is

The line 2x-3y=9 touches the conics y^(2)=-8x . find the point of contact.

If the line k^(2)(x-1)+k(y-2)+1=0 touches the parabola y^(2)-4x-4y+8=0 , then k can be

The focus of the parabola y^(2)-4y-8x-4=0 is

The area bounded by the parabola y=4x^(2),y=(x^(2))/(9) and the line y = 2 is

The focus of the parabola y^(2)-4y-8x+4=0 is,