Home
Class 12
MATHS
The locus of the point of intersection o...

The locus of the point of intersection of tangents to the ellipse `x^(2)/a^(2) + y^(2)/b^(2) = 1` at the points whose eccentric angles differ by `pi//2`, is

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of the point of intersection of tangents to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 which meet at right , is

The locus of the point of intersection of tangents to the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , which make complementary angles with x - axis, is

The locus of point of intersection of tangents to an ellipse x^2/a^2+y^2/b^2=1 at two points the sum of whose eccentric angles is constant is

The locus of point of intersection of tangents to an ellipse x^2/a^2+y^2/b^2=1 at two points the sum of whose eccentric angles is constant is

Find the locus of the points of the intersection of tangents to ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 which make an angle theta.

The locus of the point of intersection of two prependicular tangents of the ellipse x^(2)/9+y^(2)/4=1 is

The locus of the point of intersection of the perpendicular tangents to the ellipse 2x^(2)+3y^(2)=6 is

The locus of the point of intersection of the tangents to the circle x^2+ y^2 = a^2 at points whose parametric angles differ by pi/3 .

The locus of the point of intersection of tangents to the circle x=a cos theta, y=a sin theta at points whose parametric angles differ by pi//4 is

Find the locus of the point of intersection of tangents to the circle x=acostheta,y=asintheta at the points whose parametric angles differ by (i) pi/3,