Home
Class 12
MATHS
If the line y=mx+sqrt(a^(2)m^(2)-b^(2)) ...

If the line `y=mx+sqrt(a^(2)m^(2)-b^(2))` touches the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1` at the point `(asectheta, bsintheta)`, show that `theta=sin^(-1)((b)/(am))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line y = mx + sqrt(a^(2) m^(2) -b^(2)), m = (1)/(2) touches the hyperbola (x^(2))/(16)-(y^(2))/(3) =1 at the point (4 sec theta, sqrt(3) tan theta) then theta is

If the line lx+my+n=0 touches the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . Then

If the line y=mx + sqrt(a^2 m^2 - b^2) touches the hyperbola x^2/a^2 - y^2/b^2 = 1 at the point (a sec phi, b tan phi) , show that phi = sin^(-1) (b/am) .

If the line y = mx + 7 sqrt(3) is normal to the hyperbola (x^(2))/(24)-(y^(2))/(18)=1 , then a value of m is :

The pole of the line lx+my+n=0 with respect to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , is

Show that the line y =x + sqrt7 touches the hyperbola 9x ^(2) - 16 y ^(2) = 144.

If x=acostheta , y=bsintheta , show that (d^2y)/(dx^2)=-(b^4)/(a^2y^3) .

If the line y=x+sqrt(3) touches the ellipse (x^(2))/(4)+(y^(2))/(1)=1 then the point of contact is

If x/a+y/b=sqrt(2) touches the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , then find the eccentric angle theta of point of contact.

If e is the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and theta is the angle between the asymptotes, then cos.(theta)/(2) is equal to