Home
Class 12
MATHS
The line y=mx+1 is a tangent to the para...

The line `y=mx+1` is a tangent to the parabola `y^2 = 4x` if (A) `m=1` (B) `m=2` (C) `m=4` (D) `m=3`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line px + qy =1m is a tangent to the parabola y^(2) =4ax, then

The line y=mx+1 is a tangent to the curve y^2=4x if the value of m is(A) 1 (B) 2(C) 3(D) 1/2.

The line y = m x + 1 is a tangent to the curve y^2=4x if the value of m is (A) 1 (B) 2 (C) 3 (D) 1/2

If the line y=m x+1 is tangent to the parabola y^2=4x , then find the value of m .

The line y=m x+1 is a tangent to the curve y^2=4x , if the value of m is (a) 1 (b) 2 (c) 3 (d) 1/2

If the line y=m x+1 is tangent to the parabola y^2=4x , then find the value of mdot

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If y = mx + 1 is tangent to the parabola y = 2 sqrt(x) , then find the value of m

If y+3=m_1(x+2) and y+3=m_2(x+2) are two tangents to the parabola y_2=8x , then (a) m_1+m_2=0 (b) m_1+m_2=-1 (c) m_1+m_2=1 (d) none of these