Home
Class 12
MATHS
The straight line lx+my+n=0 will touch t...

The straight line `lx+my+n=0` will touch the parabola `y^2 = 4px` if
(A) `lm^2 = np`
(B) `mn=pl^2`
(C) `pn^2 = lm`
(D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The line lx+my+n=0 is a normal to the parabola y^2 = 4ax if

The pole of the line lx+my+n=0 with respect to the parabola y^(2)=4ax, is

If the line l x+m y+n=0 touches the parabola y^2=4a x , prove that ln=a m^2

If the line l x+m y+n=0 touches the parabola y^2=4a x , prove that ln=a m^2

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If y=m x+c touches the parabola y^2=4a(x+a), then (a) c=a/m (b) c=a m+a/m c=a+a/m (d) none of these

The condition that the line lx +my+n =0 to be a normal to y^(2)=4ax is

If the circle x^2 + y^2 + lambdax = 0, lambda epsilon R touches the parabola y^2 = 16x internally, then (A) lambda lt0 (B) lambdagt2 (C) lambdagt0 (D) none of these

If y=m x+c touches the parabola y^2=4a(x+a), then (a) c=a/m (b) c=a m+a/m (c) c=a+a/m (d) none of these