Home
Class 12
MATHS
A ray of light moving parallel to the x-...

A ray of light moving parallel to the x-axis gets reflected form a parabolic mirror whose equation is `(y-2)^2=4(x+1)` . Find the point on the axis of the parabola through which the ray must pass after reflection.

Promotional Banner

Similar Questions

Explore conceptually related problems

A ray of light moving parallel to the X-axis gets reflected from a parabolic mirror whose equation is (y-2)^2=4(x+1) . After reflection , the ray must pass through the point

A ray of light moving parallel to the x-axis gets reflected from parabolic mirror whose equation is (y-3)^(2)=8(x+2) . After reflection, the ray must pass through

A ray of light moving parallel to x-axis gets reflected from a parabolic mirror (y-2)^(2)=4(x+1) . After reflection the ray must pass through

A ray of light moving parallel to x-axis gets reflected from a parabolic mirror whose equation is 4( x+ y) - y^(2) = 0 . After reflection the ray pass through the pt(a, b) . Then the value of a + b is

A ray of light passing through the focus, after reflection from a concave mirror travels ……….

A ray of light passing through the point (1, 2) reflects on the x–axis at point A and the reflected ray passes through the point (5, 3). Find the coordinates of A.

A ray of light along x+sqrt(3)y=sqrt(3) gets reflected upon reaching x-axis, the equation of the reflected ray is

A ray of light coming fromthe point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5,3). The coordinates of the point A is :

A ray of light passing through the point (1,2) reflects on the x-a xi s at point A and the reflected ray passes through the point (5,3) . Find the co-ordinates of Adot

A parabola passes through the point the point (1,2), (2,1), (3,4) and (4,3). Find the equation of the axis of parabola.