Home
Class 12
MATHS
If the circle x^2 + y^2 + lambdax = 0, l...

If the circle `x^2 + y^2 + lambdax = 0, lambda epsilon R` touches the parabola `y^2 = 16x` internally, then
(A) `lambda lt0`
(B) `lambdagt2`
(C) `lambdagt0`
(D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The circle x^2+y^2+2lambdax=0,lambda in R , touches the parabola y^2=4x externally. Then, (a) lambda>0 (b) lambda 1 (d) none of these

The circle x^(2)+y^(2)+2lamdax=0,lamdainR , touches the parabola y^(2)=4x externally. Then,

If the circle x^(2)+y^(2)+2ax=0, a in R touches the parabola y^(2)=4x , them

The circle x^2+y^2+4lamdax=0 which lamda in R touches the parabola y^2=8x . The value of lamda is given by

2x^2 +2y^2 +4 lambda x+lambda =0 represents a circle for

If the equation 3x^2 + 3y^2 + 6lambdax + 2lambda = 0 represents a circle, then the value of lambda . lies in

If 2x+y+lambda=0 is a normal to the parabola y^2=-8x , then lambda is (a)12 (b) -12 (c) 24 (d) -24

If the equation lambdax^2+ 4xy + y^2 + lambdax + 3y + 2 = 0 represent a parabola then find lambda .

The line 4y - 3x + lambda =0 touches the circle x^2 + y^2 - 4x - 8y - 5 = 0 then lambda=

Portion of asymptote of hyperbola x^2/a^2-y^2/b^2 = 1 (between centre and the tangent at vertex) in the first quadrant is cut by the line y + lambda(x-a)=0 (lambda is a parameter) then (A) lambda in R (B) lambda in (0,oo) (C) lambda in (-oo,0) (D) lambda in R-{0}