Home
Class 12
MATHS
Tangents and normal drawn to the parabol...

Tangents and normal drawn to the parabola `y^2=4a x` at point `P(a t^2,2a t),t!=0,` meet the x-axis at point `Ta n dN ,` respectively. If `S` is the focus of theparabola, then (a) `S P=S T!=S N` (b) `S P!=S T=S N` (c) `S P=S T=S N` (d) `S P!=S T!=S N`

Promotional Banner

Similar Questions

Explore conceptually related problems

Two mutually perpendicular tangents of the parabola y^2=4a x meet the axis at P_1a n dP_2 . If S is the focus of the parabola, then 1/(S P_1) +1/(S P_2) is equal to 4/a (b) 2/1 (c) 1/a (d) 1/(4a)

If S be the focus of the parabola and tangent and normal at any point P meet its axis in T and G respectively, then prove that ST=SG = SP .

If the tangents at the points Pa n dQ on the parabola y^2=4a x meet at T ,a n dS is its focus, the prove that S P ,S T ,a n dS Q are in GP.

If the tangents at the points Pa n dQ on the parabola y^2=4a x meet at T ,a n dS is its focus, the prove that S P ,S T ,a n dS Q are in GP.

If the normals to the parabola y^2=4a x at three points P ,Q ,a n dR meet at A ,a n dS is the focus, then S PdotS qdotS R is equal to a^2S A (b) S A^3 (c) a S A^2 (d) none of these

If the line passing through the focus S of the parabola y=a x^2+b x+c meets the parabola at Pa n dQ and if S P=4 and S Q=6 , then find the value of adot

If the line passing through the focus S of the parabola y=a x^2+b x+c meets the parabola at Pa n dQ and if S P=4 and S Q=6 , then find the value of adot

If P and Q are two points whose coordinates are (a t^2,2a t)a n d(a/(t^2),(2a)/t) respectively and S is the point (a,0). Show that 1/(S P)+1/(s Q) is independent of t.

If P(t^2,2t),t in [0,2] , is an arbitrary point on the parabola y^2=4x ,Q is the foot of perpendicular from focus S on the tangent at P , then the maximum area of P Q S is (a) 1 (b) 2 (c) 5/(16) (d) 5

If P(t^2,2t),t in [0,2] , is an arbitrary point on the parabola y^2=4x ,Q is the foot of perpendicular from focus S on the tangent at P , then the maximum area of P Q S is (a) 1 (b) 2 (c) 5/(16) (d) 5