Home
Class 12
MATHS
Length of latus rectum of the ellipse 2x...

Length of latus rectum of the ellipse `2x^2 + y^2 - 8x+2y+7=0` is (A) 8 (B) 4 (C) 2 (D) `sqrt(2)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The length of latus rectum of the ellipse 3x^(2) + y^(2) = 12 is (i) 4 (ii) 3 (iii) 8 (iv) (4)/(sqrt(3))

The length of latus-rectum of the ellipse 3x^(2) + 4y^(2) - 6x + 8y - 5 = 0 is (i) 3 (ii) (3)/(2) (iii) (sqrt(3))/(2) (iv) none of these

Eccentricity of the ellipse 4x^2+y^2-8x+2y+1=0 is

The length of the latus rectum of the ellipse 2x^(2) + 3y^(2) - 4x - 6y - 13 = 0 is

The length of latus rectum of the parabola 4y^2+2x−20y+17=0 is (a) 3 (b) 6 (c) 1/2 (d) 9

The length of latus - rectum of the parabola x^(2) - 4x + 8y + 12 = 0 is (i) 2 (ii) 4 (iii) 6 (iv) 8

The length of latus-rectum of the hyperbola x^(2) - 2y ^(2) - 2x + 8y - 1 = 0 is (i) sqrt(6) (ii) 4 sqrt(3) (iii) 4 (iv) 3

The length of the latus rectum of the hyperbola x^(2) -4y^(2) =4 is

The length of latus rectum AB of ellipse (x^(2))/4+(y^(2))/3=1 is :

The length of the major axis of the ellipse 3x^2+2y^2-6x8y-1=0 is