Home
Class 12
MATHS
If the polar of x^2/a^2 + y^2/b^2 = 1 is...

If the polar of `x^2/a^2 + y^2/b^2 = 1` is always touching the curve `x^2/b^2 + y^2/a^2 = 1`, then the locus of pole is (A) a circle (B) a parabola (C) an ellipse (D) a hyperbola

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation 16 x^2+y^2+8x y-74 x-78 y+212=0 represents a. a circle b. a parabola c. an ellipse d. a hyperbola

The equation x^(2) - 2xy +y^(2) +3x +2 = 0 represents (a) a parabola (b) an ellipse (c) a hyperbola (d) a circle

The sides A Ca n dA B of a A B C touch the conjugate hyperbola of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 . If the vertex A lies on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , then the side B C must touch parabola (b) circle hyperbola (d) ellipse

The sides A Ca n dA B of a A B C touch the conjugate hyperbola of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 . If the vertex A lies on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , then the side B C must touch parabola (b) circle hyperbola (d) ellipse

If x/alpha+y/beta=1 touches the circle x^2+y^2=a^2 then point (1/alpha , 1/beta) lies on (a) straight line (b) circle (c) parabola (d) ellipse

If x/alpha+y/beta=1 touches the circle x^2+y^2=a^2 then point (1/alpha , 1/beta) lies on (a) straight line (b) circle (c) parabola (d) ellipse

If the polar with respect to y^2 = 4ax touches the ellipse x^2/alpha^2 + y^2/beta^2=1 , the locus of its pole is (a) (x^2)/(alpha^2)-(y^2)/(4a^2 alpha^2"/"beta^2)=1 (b) (x^2)/(alpha^2)+(beta^2 y^2)/(4a^2)=1 (c) a^2x^2+b^2y^2=1 (d) None of these

The locus of the poles of the tangents to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 w.r.t. the circle x^2 + y^2 = a^2 is: (a) parabola (b) ellipse (c) hyperbola (d) circle

A circle touches the x-axis and also thouches the circle with center (0, 3) and radius 2. The locus of the center of the circle is (a) a circle (b) an ellipse (c) a parabola (d) a hyperbola

The locus a point P(alpha,beta) moving under the condition that the line y=alphax+beta is a tangent to the hyperbola x^2/a^2-y^2/b^2=1 is (A) a parabola (B) an ellipse (C) a hyperbola (D) a circle