Home
Class 12
MATHS
If ordinate PQ of a hyperbola be produce...

If ordinate `PQ` of a hyperbola be produced to `R` so that `PR` is equal to either of the focal radii of `Q`, then the locus of `R` is : (A) a parabola (B) an ellipse (C) a hyperbola (D) a pair of parallel straight lines

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of the point (sqrt(3h+2), sqrt(3k) if (h, k) lies on x+y=1 is : (A) a circle (B) an ellipse (C) a parabola (D) a pair of straight lines

The locus of the point (sqrt(3h+2), sqrt(3k)) if (h, k) lies on x+y=1 is : (A) a circle (B) an ellipse (C) a parabola (D) a pair of straight lines

Locus the centre of the variable circle touching |z-4|=1 and the line Re(z)=0 when the two circles on the same side of the line is (A) a parabola (B) an ellipse (C) a hyperbola (D) none of these

The equation x^(2) - 2xy +y^(2) +3x +2 = 0 represents (a) a parabola (b) an ellipse (c) a hyperbola (d) a circle

If the polar of x^2/a^2 + y^2/b^2 = 1 is always touching the curve x^2/b^2 + y^2/a^2 = 1 , then the locus of pole is (A) a circle (B) a parabola (C) an ellipse (D) a hyperbola

The locus of the point of intersection of the tangent at the endpoints of the focal chord of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 ( b < a) (a) is a an circle (b) ellipse (c) hyperbola (d) pair of straight lines

The locus a point P(alpha,beta) moving under the condition that the line y=alphax+beta is a tangent to the hyperbola x^2/a^2-y^2/b^2=1 is (A) a parabola (B) an ellipse (C) a hyperbola (D) a circle

The locus a point P(alpha,beta) moving under the condition that the line y=alphax+beta is a tangent to the hyperbola x^2/a^2-y^2/b^2=1 is (A) a parabola (B) an ellipse (C) a hyperbola (D) a circle

The locus of point of intersection of the lines x/a-y/b=m and x/a+y/b=1/m (i) a circle (ii) an ellipse (iii) a hyperbola (iv) a parabola

|z-4|+|z+4|=16 where z is as complex number ,then locus of z is (A) a circle (B) a straight line (C) a parabola (D) none of these