Home
Class 12
MATHS
An ellipse passes through a focus of the...

An ellipse passes through a focus of the hyperbola `x^2/9 - y^2/16 = 1` and its major and minor axes coincide with the transverse and conjugate axes of the hyperbola and the product of eccentricities of ellipse and hyperbola is 1. Foci of the ellipse are (A) `(+- 4, 0)` (B) `(+-3, 0)` (C) `(+-5, 0)` (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

An ellipse passes through a focus of the hyperbola x^2/9 - y^2/16 = 1 and its major and minor axes coincide with the transverse and conjugate axes of the hyperbola and the product of eccentricities of ellipse and hyperbola is 1. Equation of ellipse is : (A) x^2/16 + y^2/9 =1 (B) x^2/25 + y^2/9 = 1 (C) x^2/25 + y^2/16 = 1 (D) none of these

An ellipse passes through a focus of the hyperbola x^2/9 - y^2/16 = 1 and its major and minor axes coincide with the transverse and conjugate axes of the hyperbola and the product of eccentricities of ellipse and hyperbola is 1. If l and l\' be the length of semi latera recta of ellipse and hyperbola, then ll\'= (A) 144/15 (B) 256/15 (C) 225/12 (D) none of these

If a hyperbola passes through foci of the ellipse x^2/5^2 + y^2/3^2 = 1 and its transverse and conjugate axes coincide with the major and minor axes of the ellipse and the product of their eccentricities is 1, then the product of length of semi transverse and conjugate axes of hyperbola is...

If a hyperbola passes through the foci of the ellipse (x^2)/(25)+(y^2)/(16)=1 . Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse and if the product of eccentricities of hyperbola and ellipse is 1 then the equation of a. hyperbola is (x^2)/9-(y^2)/(16)=1 b. the equation of hyperbola is (x^2)/9-(y^2)/(25)=1 c. focus of hyperbola is (5, 0) d. focus of hyperbola is (5sqrt(3),0)

If a hyperbola passes through the foci of the ellipse (x^2)/(25)+(y^2)/(16)=1 . Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse and if the product of eccentricities of hyperbola and ellipse is 1 then the equation of a. hyperbola is (x^2)/9-(y^2)/(16)=1 b. the equation of hyperbola is (x^2)/9-(y^2)/(25)=1 c. focus of hyperbola is (5, 0) d. focus of hyperbola is (5sqrt(3),0)

If a hyperbola passes through the foci of the ellipse (x^2)/(25)+(y^2)/(16)=1 . Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse and if the product of eccentricities of hyperbola and ellipse is 1 then the equation of hyperbola is (x^2)/9-(y^2)/(16)=1 b. the equation of hyperbola is (x^2)/9-(y^2)/(25)=1 c. focus of hyperbola is (5, 0) d. focus of hyperbola is (5sqrt(3),0)

Find the equation of the hyperbola whose eccentricity is sqrt(2) and the distance between the foci is 16, taking transverse and conjugate axes of the hyperbola as x and y-axes respectively.

Find the length of the transverse and conjugate axes, eccentricity, centre, foci and directrices of the hyperbola. 9x^2 - 16y^2 - 72x + 96y - 144 = 0

Find the length of the transverse axis, conjugate axis, eccentricity, vertices, foci and directrices of the hyperbola 9x^2 - 16y^2 = 144 .

An ellipse and a hyperbola are confocal (have the same focus) and the conjugate axis of the hyperbola is equal to the minor axis of the ellipse. If e_1a n de_2 are the eccentricities of the ellipse and the hyperbola, respectively, then prove that 1/(e1 2)+1/(e2 2)=2 .