Home
Class 12
MATHS
Statement I The line y=mx+a/m is tangent...

Statement I The line `y=mx+a/m` is tangent to the parabola `y^2=4ax` for all values of m.
Statement II A straight line y=mx+c intersects the parabola `y^2=4ax` one point is a tangent line.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line y=m x+1 is tangent to the parabola y^2=4x , then find the value of m .

If the line y=m x+1 is tangent to the parabola y^2=4x , then find the value of mdot

If the line px + qy =1m is a tangent to the parabola y^(2) =4ax, then

If the line y=mx+c is a normal to the parabola y^2=4ax , then c is

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

The line 4x+6y+9 =0 touches the parabola y^(2)=4ax at the point

The line y=mx+1 is a tangent to the parabola y^2 = 4x if (A) m=1 (B) m=2 (C) m=4 (D) m=3

If y = mx + 1 is tangent to the parabola y = 2 sqrt(x) , then find the value of m

The line among the following that touches the parabola y^(2)=4ax is