Home
Class 12
MATHS
if the parabola y=x^2 + bx+c touches the...

if the parabola `y=x^2 + bx+c` touches the straight line` y=x` at (1,1)`, then `1000+100b+10c=`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If the curve y=x^(2)+bx +c touches the line y = x at the point (1,1), then the set of values of x for which the curve has a negative gradient is

Find the area bounded by the parabola y=x^2+1 and the straight line x+y=3.

Find the area bounded by the parabola y=x^2+1 and the straight line x+y=3.

Find the area bounded by the parabola y=x^2+1 and the straight line x+y=3.

Let the parabolas y=x(c-x)a n dy=x^2+a x+b touch each other at the point (1,0). Then (a) a+b+c=0 (b) a+b=2 (c) b-c=1 (d) a+c=-2

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

Let the parabolas y=x(c-x)a n dy=x^2+a x+b touch each other at the point (1,0). Then a+b+c=0 a+b=2 b-c=1 (d) a+c=-2

If a chord of the parabola y^2 = 4ax touches the parabola y^2 = 4bx , then show that the tangent at the extremities of the chord meet on the parabola b^2 y^2 = 4a^2 x .

Show that the equation of the circle which passes through the point (-1,7) and which touches the straight line x=y at (1,1) is x^2+y^2+3x-7y+2=0