Home
Class 12
MATHS
inttan^(- 1)sqrt((1-sinx)/(1+sinx))dx ,-...

`inttan^(- 1)sqrt((1-sinx)/(1+sinx))dx ,-pi/2

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1){sqrt((1+sinx)/(1-sinx))},\ -pi/2

Differentiate the following functions with respect to x : tan^(-1){sqrt((1+sinx)/(1-sinx))},-pi/2ltxltpi/ 2

Differentiate the following functions with respect to x : tan^(-1){sqrt((1+sinx)/(1-sinx))},- pi/2ltxltpi/ 2

int(e^(-x/2)sqrt(1-sinx))/(1+cosx)dx

If y= tan^(-1)sqrt((1-sinx)/(1+sinx)) , then the value of (dy)/(dx) at x= (pi)/6 is.

int(sinx)/(sqrt(1+sinx))dx

Express each of the following in the simplest form: tan^(-1){(cosx)/(1-sinx)} ,where -pi/2 < x < pi/2 (ii) tan^(-1)((cosx-sinx)/(cosx+sinx)) , -pi/4 < x < pi/4

Differentiate tan^(-1){(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))} , 0 < x < pi

The value of tan^(-1)[(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))](AA x in [0, (pi)/(2)]) is equal to

Differentiate the following function sqrt((1+sinx)/(1-sinx))