Home
Class 12
MATHS
int(dx)/(sin^2xcos^2x)equals(A) tanx+cot...

`int(dx)/(sin^2xcos^2x)`equals(A) `tanx+cotx+C` (B) `tanx-cotx+C`(C) `tanxcotx+C` (D) `tanx-cot2x+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(sin^2x-cos^2x)/(sin^2cos^2x)dx is equal to(A) tanx+cotx+c (B) tanx+cose cx+c (C) -tanx+cotx+c (D) tanx+secx+c

int\ (sin^6x + cos^6x)/(sin^2 x*cos^2x)\ dx (i) tanx+ cotx+3x+C (ii) tanx+ cotx-3x+C (iii) tanx-cotx-3x+C (iv) tanx-cotx+3x+C

int(cos2x-1)/(cos2x+1)\ dx= (a) tanx-x+C (b) x+tanx+C (c) x-tanx+C (d) x-cotx+C

int1/(cos^6x+sin^6x)dx is equal to (A) tan^-1(tanx-cotx)+c (B) sin^-1(sin2x)+c (C) tan^-1(tanx+cotx)+c (D) cot^-1(tanx+cotx)+c

int(ln(tanx)/(sinxcosx)dx i se q u a lto (a) 1/2ln(tanx)+c (b) 1/2ln(tan^2x)+c (c) 1/2(ln(tanx))^2+c (d) none of these

int(cos4x-1)/(cotx-tanx)dx is equal to

int ( x + cotx ) cot^2x dx

differentiate (tanx)^cotx+(cotx)^(tanx)

intx^2/(xsinx+cosx)^2dx=-(xsecx)/(xsinx+cosx)+f(x)+c , then f(x) may be (A) sinx (B) xsinx (C) tanx (D) cotx

If intsqrt(cotx)/(sinxcosx)dx=asqrt(cotx)+b , then (A) 1 (B) 2 (C) -1 (D) -2