Home
Class 12
MATHS
int\ (sin^6x + cos^6x)/(sin^2 x*cos^2x)\...

`int\ (sin^6x + cos^6x)/(sin^2 x*cos^2x)\ dx` (i) `tanx+ cotx+3x+C` (ii) `tanx+ cotx-3x+C` (iii)`tanx-cotx-3x+C` (iv)`tanx-cotx+3x+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(2tanx+3)/(sin^2x+2cos^2x)dx

int(dx)/(sin^2xcos^2x) equals(A) tanx+cotx+C (B) tanx-cotx+C (C) tanxcotx+C (D) tanx-cot2x+C

int(sin^2x-cos^2x)/(sin^2cos^2x)dx is equal to(A) tanx+cotx+c (B) tanx+cose cx+c (C) -tanx+cotx+c (D) tanx+secx+c

int(cos2x-1)/(cos2x+1)\ dx= (a) tanx-x+C (b) x+tanx+C (c) x-tanx+C (d) x-cotx+C

intx^2/(xsinx+cosx)^2dx=-(xsecx)/(xsinx+cosx)+f(x)+c , then f(x) may be (A) sinx (B) xsinx (C) tanx (D) cotx

int ( x + cotx ) cot^2x dx

Evaluate: inte^x\ (cotx-cos e c^2x)\ dx

Evaluate: (i) int(sin2x)/(sin5xsin3x)\ dx (ii) int(1+cotx)/(x+logsinx)\ dx

Evaluate: int(2cos2x+sec^2x)/(sin2x+tanx-6)dx

int1/(cos^6x+sin^6x)dx is equal to (A) tan^-1(tanx-cotx)+c (B) sin^-1(sin2x)+c (C) tan^-1(tanx+cotx)+c (D) cot^-1(tanx+cotx)+c