Home
Class 12
MATHS
The value of the integral intalpha^beta ...

The value of the integral `int_alpha^beta 1/(sqrt((x-alpha)(beta-x)))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the inntegral int_(alpha)^(beta) (1)/(sqrt((x-alpha)(beta-x)))dx is

The value of the integral int_(alpha)^(beta) sqrt((x-alpha)(beta-x))dx , is

int _(alpha)^(beta) sqrt((x-alpha)/(beta -x)) dx is equal to

The value of the integral int_(0)^(3alpha) cosec (x-alpha)cosec(x-2alpha)dx is

The value of the determinant |(alpha,beta,l),(alpha,x, n),(alpha,beta,x)| is independent of l b. independent of n c. alpha(x-l)(x-beta) d. alphabeta(x-l)(x-n)

int(dx)/(sin(x-alpha)sin(x-beta)

Evaluate int (dx)/((sqrt((x-alpha)^(2)-beta^(2)))(ax+b)) .

Evaluate: int1/((x-alpha)(beta-x))dx ,(beta>alpha)

Evaluate: int1/((x-alpha)(beta-x))dx ,(beta>alpha)

If alpha and beta are the roots of the equation x^2-px + q = 0 then the value of (alpha+beta)x -((alpha^2+beta^2)/2)x^2+((alpha^3+beta^3)/3)x^3+... is