Home
Class 12
MATHS
Prove that int0pi/4 2tan^3x""dx=1-log2...

Prove that `int0pi/4 2tan^3x""dx=1-log2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_0^(pi/4) 2tan^3xdx=1-log2

int_0^(pi/4)2tan^3xdx=1-log2

int_(0)^( pi/4)tan^(3)dx

Prove that int_(0)^(tan^(-1)x)/x dx=1/2int_(0)^((pi)/2)x/(sinx)dx .

int_0^(pi/2)1/(1+tan^2x)dx

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

Prove that: int_0^(pi//2)logsinx\ dx=\ int_0^(pi//2)logcosx\ dx=-pi/2log2

Prove that: int_0^(pi//2)log|tanx+cotx|dx=pi(log)_e2

Evaluate: int_0^(pi//4)tan^2x dx

Prove that int_0^(pi//8) log |1 + tan 2x|\ dx = pi/16 log_e 2.