Home
Class 12
MATHS
int0^(pi/3) (secx tanx)/(1+sec^2x)dx...

`int_0^(pi/3) (secx tanx)/(1+sec^2x)dx`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_0^(pi/4) secx/(1+2sin^2x)dx

The value of int_(-(pi/4)^(1/3))^((pi/4)^(1/3))(x^2)/((1+sin^2x^3)(1+e^(x^7)))dxi s (a) 1/3tan^(-1)sqrt(2) (b) 1/(3sqrt(2))tan^(-1)sqrt(2) (c) int_0^(pi/4)(sec^2dx)/(sec^2x+tan^2x) (d) 1/3int_0^(pi/4)(sec^2x dx)/(sec^2x+tan^2x)

Evaluate the following integrals: int_0^(pi//2)(tanx)/(1+m^2tan^2x)dx

Evaluate: int_0^pi(xtanx)/(secx+tanx)\ dxdot

int(secx- tan x)/(sec x+ tan x) dx

Evaluate the definite integrals int_0^pi (xtanx)/(secx+tanx)dx

int_(0)^(pi//2)(dx)/(1+tanx) is

int_(0)^(pi/3)(x)/(1+secx)dx

Evaluate the following: int_0^(pi/2) sqrt(tanx)/(1+sqrt(tanx))dx

int_0^pi tanx/(sinx+tanx)dx