Home
Class 12
MATHS
Prove that: int0^(2pi)(xsin^(2n)x)/(s...

Prove that: `int_0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

For n gt 0 int_(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

Prove that : int_(0)^(pi//2) (cos^(5))/(sin^(5) x+cos^(5) x)dx= (pi)/(4)

Evaluate int_(0)^(2pi)(xcos^(2n)x)/(cos^(2n)x+sin^(2n)x)dx

int_0^(pi//4)(x^2(sin2x-cos2x))/((1+sin2x)cos^2x)dx

Evaluate: int_0^(pi/2) (sin2x)/(sin^4x+cos^4x)dx

Evaluate the following integrals: int_0^(pi//2)(sin^n x)/(sin^n x+cos^n x)dx

Evaluate : int_0^(pi/2)(sin^2x)/(sin x+cos x)dx

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

Prove that : int_(0)^(pi) (x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx =(pi^(2))/(2ab)

Prove that : int_(0)^(pi) sin^(2m) x. cos^(2m+1) x dx=0