Home
Class 12
MATHS
Prove that int- 1^1log((2-x)/(2+x))^(20)...

Prove that `int_- 1^1log((2-x)/(2+x))^(20)dx=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: int_(-a)^(a) log ((2-x)/(2+x)) dx=0

Prove that int_0^1 tan^-1((2x-1)/(1+x-x^2))dx=0

Prove that int_(0)^(oo) (sin^(2)x)/(x^(2))dx=int_(0)^(oo) (sinx)x dx

Evaluate int_(-1)^(1) log ((2-x)/( 2+x)) dx

Evaluate the following integral: int_(-1)^1log((2-x)/(2+x))dx\

Prove that : int_(0)^(oo) log (x+(1)/(x)). (dx)/(1+x^(2)) = pi log_(e) 2

Prove that: int_(0)^(oo) (x)/((1+x)(1+x^(2)))dx =(pi)/(4)

Prove that 1 lt int_(0)^(2)((5-x)/(9-x^(2)))dx lt 6/5

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

Prove that : int_(0)^(1)(sin^(-1)x)/(x) dx = (pi)/(2) log 2