Home
Class 12
MATHS
Prove that: int0^(pi//2)log|tanx+cotx...

Prove that: `int_0^(pi//2)log|tanx+cotx|dx=pi(log)_e2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: int_0^(pi//2) \ log|tanx| \ dx=0

Prove that : int_(0)^(pi//2) x . cot x dx =(pi)/(2)log 2

Prove that int_0^(pi//8) log |1 + tan 2x|\ dx = pi/16 log_e 2.

8. int_0^(pi/4) log(1+tanx)dx

Evaluate : int_(0)^(pi/2)log(tanx)dx

Prove that: int_0^(pi//2)logsinx\ dx=\ int_0^(pi//2)logcosx\ dx=-pi/2log2

int_(0)^(pi//2) log | tan x | dx is equal to

int_(0)^(pi) x log sinx dx

Prove that int_0^(pi/4) 2tan^3xdx=1-log2

Evaluate int_0^(pi/2) log sin xdx