Home
Class 12
MATHS
int0^(2pi)(sin^3x+2"ln"|sinx|+tan^5x)dx=...

`int_0^(2pi)(sin^3x+2"ln"|sinx|+tan^5x)dx=` `piln2` (2) `-piln2` (3) `-4piln2` `4piln2` (5) 6`piln2`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)sinx sin2x sin3x sin 4x dx=

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

int_(0)^(pi//2) sin 2x log tan x dx is equal to

int_(0)^(pi) cos 2x . Log (sinx) dx

int_0^(pi//4)(x^2(sin2x-cos2x))/((1+sin2x)cos^2x)dx

int_(0)^(pi//4)e^( sinx)(((x cos^(3)x- sinx))/( cos^(2)x))dx

u=int_0^(pi/2)cos((2pi)/3sin^2x)dx and v=int_0^(pi/2) cos(pi/3 sinx) dx

int_(0)^(pi//2) (dx)/(4sin^(2) x + 5 cos^(2)x)

int_0^(pi//2)(sinx)/(sin x+cos x)dx equals to a. pi//2 b. pi//4 c. pi//3 d. pi

int_0^(pi/2)sin4xcotx dx is equal to -pi/2 (2) 0 (3) pi/2 (4) pi