Home
Class 12
MATHS
Find the area of region : {(x,y) : 0 le ...

Find the area of region : `{(x,y) : 0 le y le x^(2) + 1, 0 le y le x + 1,0 le x le 2}`.

Promotional Banner

Similar Questions

Explore conceptually related problems

STATEMENT-1 : The area bounded by the region {(x,y) : 0 le y le x^(2) + 1 , 0 le y le x + 1 , 0 le x le 2} is (23)/(9) sq. units and STATEMENT-2 : Required Area is int_(a)^(b) (y_(2) - y_(1)) dx

Find the area of the region {(x,y): x^(2)+y^(2) le 1 le x + y}

The area of the region {(x,y): xy le 8,1 le y le x^(2)} is :

Find the area of the region {(x,y)//x^(2)-x-1 le y le -1}

x - y le 2

If the line x = alpha divides the area of region R = {(x,y) in R^(2) : x^(3) le y le x, 0 le x le 1} into two equal parts, then

If the line x= alpha divides the area of region R={(x,y)in R^(2): x^(3) le y le x ,0 le x le 1 } into two equal parts, then

The area of the region R={(x,y)//x^(2)le y le x} is

Using integration, find the area of the region {(x,y) : x^(2) +y^(2) le 1, x+y ge 1, x ge 0, y ge 0}

Using integration ,find the area of the region {(x,y) : y^(2) le 4x, 4x^(2) +4y^(2) le 9 }