Home
Class 12
MATHS
a=([1+((dy)/(dx))^(2)]^(3//2))/((d^(2)y)...

`a=([1+((dy)/(dx))^(2)]^(3//2))/((d^(2)y)/(dx^(2)))`, where a is constant.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the order and degree (if defined) of the equation: a=(1[1+((dy)/(dx))^2]^(3/2))/((d^2y)/(dx^2)), where a is constant

Find the order and degree (if defined) of the equation: a=(1[1+((dy)/(dx))^2]^(3/2))/((d^2y)/(dx^2)), where a is constant

If (x-a)^2+(y-b)^2=c^2 , for some c > 0 , prove that ([1+((dy)/(dx))^2]^(3/2))/((d^2y)/(dx^2)) is a constant independent of a and b.

If (x-a)^2+(y-b)^2=c^2, for some c >0, prove that ([1+((dy)/(dx))^2]^(3/2))/((d^2y)/(dx^2)) is a constant independent of a and b .

If (x-a)^2+(y-b)^2=c^2, for some c >0, prove that ([1+((dy)/(dx))^2]^(3/2))/((d^2y)/(dx^2)) is a constant independent of a and b.

If (x-a)^2+(y-b)^2=c^2 , for some c > 0 , prove that ([1+((dy)/(dx))^2]^(3/2))/((d^2y)/(dx^2)) is a constant independent of a and b.

The degree of the differential equation [1+((dy)/(dx))^(2)]^(3//2)=(d^(2)y)/(dx^(2))"is"

If R=([1+((dy)/(dx))^2]^(3//2))/((d^2y)/(dx2)) , then R^(2//3) can be put in the form of a. 1/(((d^2y)/(dx^2))^(2//3))+1/(((d^2x)/(dy^2))^(2//3)) b. 1/(((d^2y)/(dx^2))^(2//3))-1/(((d^2x)/(dy^2))^(2//3)) c. 2/(((d^2y)/(dx^2))^(2//3))+2/(((d^2x)/(dy^2))^(2//3)) d. 1/(((d^2y)/(dx^2))^(2//3))1/(((d^2x)/(dy^2))^(2//3))

If R=([1+((dy)/(dx))^2]^(-3//2))/((d^2y)/(dx2)) , then R^(2//3) can be put in the form of 1/(((d^2y)/(dx^2))^(2//3))+1/(((d^2x)/(dy^2))^(2//3)) b. 1/(((d^2y)/(dx^2))^(2//3))-1/(((d^2x)/(dy^2))^(2//3)) c. 2/(((d^2y)/(dx^2))^(2//3))+2/(((d^2x)/(dy^2))^(2//3)) d. 1/(((d^2y)/(dx^2))^(2//3))dot1/(((d^2x)/(dy^2))^(2//3))

STATEMENT -1 : for the function y= f(x), f(x) ,({1+((dy)/dx)^(2)}^(3/2))/((d^(2)y)/(dx^(2))) = - ({1+ (dx/dy)^(2)}^(3/2))/((d^(2)x)/(dy^(2))) STATEMENT -2 : (dy)/(dx) = (1/(dx))/dy and (d^(2)y)/(dx^(2)) = d/dx (dy/(dx))