Home
Class 12
MATHS
sqrt(1+x^2)dy+sqrt(1+y^2)dx=0...

`sqrt(1+x^2)dy+sqrt(1+y^2)dx=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y(x) is a solution of differential equation sqrt(1-x^2) dy/dx + sqrt(1-y^2) = 0 such that y(1/2) = sqrt3/2 , then

Find the solution of the differential equation x\ sqrt(1+y^2)dx+y\ sqrt(1+x^2)dy=0.

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , show that (dy)/(dx)= (sqrt(1-y^(2)))/(sqrt(1-x^(2)))

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y), prove that (dy)/(dx)=sqrt((1-y^2)/(1-x^2))

If (x+sqrt(1+x^(2))) (y+sqrt(1+y^(2))) =1 then (dy)/(dx) may be equals to