Home
Class 12
MATHS
A steamboat is moving at velocity v0 whe...

A steamboat is moving at velocity `v_0` when steam is shut off. It is given that the retardation at any subsequent time is equal to the magnitude of the velocity at that time. Find the velocity and distance travelled in time `t` after the steam is shut off.

Promotional Banner

Similar Questions

Explore conceptually related problems

For the motion with uniform velocity, how is the distance travelled related to the time ?

The deceleration exerienced by a moving motor blat, after its engine is cut-off is given by dv//dt=-kv^(3) , where k is constant. If v_(0) is the magnitude of the velocity at cut-off, the magnitude of the velocity at a time t after the cut-off is.

A particle is moving on X- axis. Its velocity time graph is given in the figure. Find distance travelled by the particle in 5 sec .

The retardation experienced by a moving motor bike after its engine is cut-off , at the instant (t) is given by, a =-k v^4 , where (k) is a constant. If v_0 is the magnitude of velocity at the cut-off , the magnitude of velocity at time (t) after the cut-off is .

A particle moves with an initial velocity V_(0) and retardation alpha v , where alpha is a constant and v is the velocity at any time t. total distance covered by the particle is

A body starts moving with a velocity v_0 = 10 ms^-1. It experiences a retardation equal to 0.2v^2. Its velocity after 2s is given by

A particle moves with an initial velocity V_(0) and retardation alpha v , where alpha is a constant and v is the velocity at any time t. Velocity of particle at time is :

A particle travels two and a half revolutions of the circle of radius R in time t. The ratio of the average speed of the particle to the magnitude of the average velocity in this time interval is

A particle is projected with a speed v and an angle theta to the horizontal. After a time t, the magnitude of the instantaneous velocity is equal to the magnitude of the average velocity from 0 to t. Find t.

A person travels along a straight road for the half time with a velocity V_1 and the next half time with a velocity V_2 . The mean velocity V of the man is