Home
Class 12
MATHS
Solve: (d^2y)/dx^2=e^x(sinx+cosx), given...

Solve: `(d^2y)/dx^2=e^x(sinx+cosx)`, given that `y=1` and `(dy)/(dx)=0`, when `x=0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: (d^2y)/dx^2=cosx-sinx

Solve: (d^2y)/dx^2=x+sinx , given that y=0 and (dy)/(dx)=-1 when x=0

Solve the following differential equation: (d^2y)/dx^2=e^x+cosx , given that (dy)/(dx)=1=y , when x=0

Solve: (d^2y)/dx^2=logx , given that y=1 and (dy)/(dx)=-1 when x=1

Solve: (dy)/(dx)+2y=e^(-x)

Solve the differential equation: (d^2y)/dx^2=x^2+sin3x , given that (dy)/(dx)=1=y , when x=0

Solve the differential equation x(d^2y)/dx^2=1 , given that y=1, (dy)/(dx)=0 when x=1

If y=e^x(sin x+cosx) prove that (d^2y)/(dx^2)-2 (dy)/(dx)+2y=0 .

If y=e^x(sinx+cosx) prove that (d^2y)/(dx^2)-2(dy)/(dx)+2y=0 .

Solve log((dy)/(dx))=4x-2y-2 , given that y=1 when x=1.