Home
Class 12
MATHS
If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=in...

If `I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx.` Then for an arbitrary constant c, the value of `J-I` equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int (e^(x)dx)/(e^(2x)+4e^(x)+3)

int(e^x+1/(e^x))^2\ dx

int (e^x)/e^(2x-4) dx

int(e^x)/((1+e^x)(2+e^x))dx

int(e^x+1/(e^x))^2dx

int(dx)/(e^(x)+e^(-x)) equals

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int (e^x +2x)/(e^x+x^2) dx

inte^x/((1+e^x)(e+e^x))dx

(i) int(e^(x))/(1+e^(x))dx" "(ii) int (e^(x)) /((1+e^(x))^(4))dx