Home
Class 12
MATHS
The integral inte^x(f(x)+f\'(x))dx can b...

The integral `inte^x(f(x)+f\'(x))dx` can be solved by using integration by parts such that: `I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C` , and `inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C` ,Now answer the question:`int(e^x(2-x^2))/((1-x)sqrt(1-x^2))dx` (A) `e^xsqrt((1-x)/(1+x))+C` (B) `e^xsqrt((1+x)/(1-x))+C` (C) `e^xsqrt((2-x)/(2+x))+C` (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: inte^x x^x(2+logx)= (A) e^x x^xlogx+C (B) e^x+x^x+C (C) e^x x(logx)^2+C (D) e^x.x^x+C

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: int{log_e(log_ex)+1/(log_ex)^2}dx is equal to (A) log_e(log_ex)+C (B) xlog_e(log_ex)-x/log_ex+C (C) x/log_ex-log_ex+C (D) log_e(log_ex)-x/log_ex+C

Evaluate: inte^x(f(x)+f^(prime)(x))dx=e^xf(x)+C

Evaluate: inte^x(f(x)+f^(prime)(x))dx=e^xf(x)+C

int e^x {f(x)-f'(x)}dx= phi(x) , then int e^x f(x) dx is

Integrate int(x*e^(x))/((1+x)^(2))dx .

Statement 1: int(xe^(x)dx)/((1+x)^(2))=(e^(x))/(x+1)+C Statement 2: inte^(x)(f(x)+f'(x))dx=e^(x)f(x)+C

If f is an integrable function, show that int_(-a)^a xf(x^2)dx=0

If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C , then

int e^x((x^2+1))/((x+1)^2)dx is equal to ((x-1)/(x+1))e^x+c (b) e^x((x+1)/(x-1))+c e^x(x+1)(x-1)+c (d) none of these