Home
Class 12
MATHS
int(5cos^3x+7sin^3x)/(3sin^2xcos^2x)dx...

`int(5cos^3x+7sin^3x)/(3sin^2xcos^2x)dx`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Evaluate the following integral : int(5cos^3x+6sin^3x)/(2sin^2xcos^2x)dx

Evaluate: (i) int(sin^3x-cos^3x)/(sin^2xcos^2x)\ dx (ii) int(5cos^3x+6sin^3x)/(2sin^2xcos^2x)\ dx

Integrate the following: int{(5cos^3x+2sin^3 x)/(2sin^2 x*cos^2 x)+sqrt(1+sin2x)+(1+2sin x)/(cos^2x)+(1-cos2x)/(1+cos 2x)}dx

int(sin^3x+sin^5x)/(cos^2x+cos^4x)dx

Integrate the functions (sin^3x+cos^3x)/(sin^2xcos^2x)

Integrate the functions (sin^3x+cos^3x)/(sin^2xcos^2x)

Integrate the functions (sin^3x+cos^3x)/(sin^2xcos^2x)

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=

(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx