Home
Class 12
MATHS
intsqrt(secx+1)dx...

`intsqrt(secx+1)dx`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 < x < pi/2 , intsqrt(1+secx)dx=2sin^(-1)(asin^(-1)(x/b))+C , where C is arbitrary constant, then ordered pair (a , b) is (1,sqrt(2)) (2) (sqrt(2),1) (sqrt(2),2) (4) (2,sqrt(2))

The value of intsqrt(1+secx)dx is equal to (A) 2sin^-1(sqrt(2)sin(x/2))+c (B) 2cos^-1(sqrt(2)sin(x/2))+c (C) 2sin^-1(sqrt(2)cos(x/2))+c (D) none of these

int sqrt(1+secx) dx is equal to:

Evaluate: intsqrt(e^x-1)dx

intsqrt(1+sinx)dx

intsqrt(1+sinx)dx

Evaluate: (i) int1/(x\ sqrt(x^4-1))\ dx (ii) intsqrt(e^x-1)\ dx

intsqrt(cotx) dx

intsqrt(x/(1+x))dx

Evaluate intsqrt(x/(1-x))dx