Home
Class 12
MATHS
intx((sec2x-1)/(sec2x+1))dx...

`intx((sec2x-1)/(sec2x+1))dx`

A

increases

B

does not change

C

first decreases and then increases

D

decreases

Text Solution

AI Generated Solution

To solve the integral \( I = \int x \frac{\sec^2 x - 1}{\sec^2 x + 1} \, dx \), we will follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand using the identity \( \sec^2 x = 1 + \tan^2 x \): \[ I = \int x \frac{\sec^2 x - 1}{\sec^2 x + 1} \, dx = \int x \frac{\tan^2 x}{\sec^2 x + 1} \, dx \] Since \( \sec^2 x + 1 = 2 \sec^2 x \), we can simplify: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int(secx)/(sec2x)dx

Evaluate: (i) int(secx)/(sec2x)\ dx (ii) int(cos2x)/((cosx+sinx)^2)\ dx

If f(x) =((sec x - 1)/( sec x + 1))^(1/2) , find f'((4pi)/( 3))

Evaluate: intx/((x+1)(x^2+1))dx

Evaluate: int(sec^2x)/(1-tan^2x)dx

Evaluate: int(sec^2x)/(1-tan^2x)\ dx

Evaluate: intx/((x+1)(x^2+1))\ dx

solve int (sec^2x)/((1+tanx)^3) dx

Evaluate: intx/((x-1)^2(x+2))\ dx

Differentiate w.r.t x using quotient rule . (sec x -1)//( sec x+1)