Home
Class 12
MATHS
If In=intsqrt((a^2+x^2)^n)dx, Prove that...

If `I_n=intsqrt((a^2+x^2)^n)dx`, Prove that: `I_n=(xsqrt((a^2+x^2))^n)/(n+1)+(na^2)/(n+1)int(a^2+x^2)^(n/2-1)dx`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_n=int x^nsqrt(a^2-x^2)dx, prove that I_n=-(x^(n-1)(a^2-x^2)^(3/2))/((n+2))+((n+1))/((n+2))a^2I_(n-2)

Prove that: I_n=int_0^oox^(2n+1) e^ (-x^2) dx=(n !)/2,n in N .

Prove that: I_n=int_0^oox^(2n+1) e^ (-x^2) dx=(n !)/2,n in N .

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .

If I_n=intxcos^nxdx,prove that: I_n=1/n cos^(n-1)x(sinx)+(n-1)/(n)I_(n-2)

int (2x^(n-1))/(x^n+3) dx

Prove that: inttan^n x\ dx=1/(n-1)tan^("n"-1)x-inttan^(n-2)x\ dx

If I_n=intdx/(x^2+a^2)^n,ninN , then show that: I_(n+1)=1/(2na^2)x/((x^2+a^2)^n)+(2n-1)/(2n). 1/a^2I_n

intdx/(xsqrt(x^(2n)-a^(2n)))

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n