Home
Class 12
MATHS
The value of the integral intx/(1+xtanx)...

The value of the integral `intx/(1+xtanx)dx` is equal to (A) `log|xcosx+sinx|+c` (B) `log|cosx+x|` (C) `log|cosx+xsinx|+c` (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int(sin5x)/(cos7xcos2x)dx is equal to (A) log|sec7x|+c (B) log|sec7xsec2x|+c (C) log|sec7x+sec2x|+c (D) none of these

The value of int(x e^ln(sinx)-cosx)dx is equal to

intx^(sinx) ((sinx)/x+cosxdotlogx) dx is equal to (A) x^(sinx)+C (B) x^(sinx)cosx+C (C) ((x^(sinx))^2)/2+C (D) none of these

The value of the integral int_0^oo(xlogx)/((1+x^2)^2)dx ,is (a)0 (b) log 7 (c) 5 log 13 (d) none of these

The value of the integral int_0^oo(xlogx)/((1+x^2)^2)dx (a) 0 (b) log 7 (c) 5 log 13 (d) none of these

The value int { ln(1+sinx)+xtan(pi/4-x/2)} dx is equal to (A) x ln(1+sinx)+C (B) ln(1+sinx)+C (C) -x ln(1+sinx)+C (D) ln(1-sinx)+C

int_2^4 log[x]dx is (A) log2 (B) log3 (C) log5 (D) none of these

Choose the correct answers int(cos2x)/((sinx+cosx)^2)dx is equal(A) (-1)/(sinx+cosx)+C (B) log|sinx+cosx|+C C) log|sinx-cosx|+C (D) 1/((sinx+cosx)^2)

The value of int(ln(cotx))/(sin2x)dx is equal to (where, C is the constant of integration)

The value of int(sinx+cosx)/(sqrt(1-sin2x))\ dx is equal to (a) sqrt(sin2x)+C (b) sqrt(cos2x)+C (c) +-(sinx-cosx)+C (d) +-log(sinx-cosx)+C