Home
Class 12
MATHS
The value of the integral int(e^(5logx)-...

The value of the integral `int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx` is equal to
(A) `x^2+c`
(B) `x^3/3+c`
(C) `x^2/2+c`
(D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx

Integrate the functions (e^(5logx)-e^(4logx))/(e^(2logx)-e^(2logx))

Evaluate: int(e^(5(log)_e x)-e^(4(log)_ex))/(e^(3(log)_e x)-e^(2logx))dx

The integral int_(2)^(4)(logx^(2))/(logx^(2)+log(36-12x+x^(2))) dx is equal to

The value of the integral int_(1//e)^(e) |logx|dx , is

int(xcosxlogx-sinx)/(x(logx)^2)dx is equal to (A) sinx+c (B) logxsinx+c (C) logx+sinx+c (D) none of these

integrate x^ x (1+logx)dx is equal to

int(x^(2)(1-logx))/((logx)^(4)-x^(4))dx equals

The value of the integral int_(e^(-1))^(e^2)|((log)_e x)/x| dx is (A) 3/2 (B) 5/2 (C) 3 (D) 5

The value of the integral int_-a^a (x e^(x^2))/(1+x^2)dx is (A) e^(a^2) (B) 0 (C) e^(-a^2) (D) a