Home
Class 12
MATHS
inttanx*tan2x*tan3xdx is equal to (A) l...

`inttanx*tan2x*tan3xdx` is equal to
(A) `logsin3x+logsin2x+logsinx+c`
(B) `log(sec3xsec2xsecx)+c`
(C) `1/3log|sec3x|-1/2log|sec2x|-log|secx|+c`
(D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int(sin5x)/(cos7xcos2x)dx is equal to (A) log|sec7x|+c (B) log|sec7xsec2x|+c (C) log|sec7x+sec2x|+c (D) none of these

int(cos4x-1)/(cotx-tanx)dx is equal to (A) 1/2ln|sec2x|-1/4cos^2 2x+c (B) 1/2ln|sec2x|+1/4cos^2x+c (C) 1/2ln|cos2x|-1/4cos^2 2x+c (D) 1/2ln|cos2x|+1/4cos^2x+c

int_2^4 log[x]dx is (A) log2 (B) log3 (C) log5 (D) none of these

int(log_e(x+1)-log_ex)/(x(x+1))dx is equal to (A) -1/2[log(x+1)^2-1/2logx]^2+log_e(x+1)log_ex+C (B) -[(log_e(x+1)-log_ex]^2 (C) c-1/2(log(1+1/x))^2 (D) none of these

intxsecx^2\ dx is equal to 1/2log(secx^2+tanx^2)+C (b) (x^2)/2log(secx^2+tanx^2)+C (c) 2log(secx^2+tanx^2)+C (d) none of these

int secx. log (sec x+ tan x ) dx

int(dx)/(x(x^2+1) equal(A) log|x|-1/2log(x^2+1)+C (B) log|x|+1/2log(x^2+1)+C (C) -log|x|+1/2log(x^2+1)+C (D) 1/2log|x|+log(x^2+1)+C

int (1 + tan x )/ (x + log sec x)dx

STATEMENT-1 : int tan5xtan3xtan2xdx is equal to (log|sec5x|)/(5)-(log|sec3x|)/(3)-(log|sec2x|)/(2)+c and STATEMENT-2: tan5x-tan3x-tan2x=tan5xtan3xtan2x .

int_(pi//6)^(pi//3)1/(sin2x)dx\ is equal to a. (log)_e3 b. (log)_"e"sqrt(3) c. 1/2log(-1) d. log(-1)