Home
Class 12
MATHS
int(xcosxlogx-sinx)/(x(logx)^2)dx is equ...

`int(xcosxlogx-sinx)/(x(logx)^2)dx` is equal to (A) `sinx+c` (B) `logxsinx+c` (C) `logx+sinx+c` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

int(2sinx+(1)/(x))dx is equal to

int(x+sinx)/(1+cosx) dx is equal to

The value of the integral int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx is equal to (A) x^2+c (B) x^3/3+c (C) x^2/2+c (D) none of these

The value of the integral int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx is equal to (A) x^2+c (B) x^3/3+c (C) x^2/2+c (D) none of these

The value of the integral intx/(1+xtanx)dx is equal to (A) log|xcosx+sinx|+c (B) log|cosx+x| (C) log|cosx+xsinx|+c (D) none of these

intx^(sinx) ((sinx)/x+cosxdotlogx) dx is equal to (A) x^(sinx)+C (B) x^(sinx)cosx+C (C) ((x^(sinx))^2)/2+C (D) none of these

Choose the correct answers int(cos2x)/((sinx+cosx)^2)dx is equal(A) (-1)/(sinx+cosx)+C (B) log|sinx+cosx|+C C) log|sinx-cosx|+C (D) 1/((sinx+cosx)^2)

The value int { ln(1+sinx)+xtan(pi/4-x/2)} dx is equal to (A) x ln(1+sinx)+C (B) ln(1+sinx)+C (C) -x ln(1+sinx)+C (D) ln(1-sinx)+C

intcos(logx)dx is equal to (A) x/2(cos(logx)-sin(logx))+c (B) x(cos(logx)+sin(logx))+c (C) x/2(cos(logx)+sin(logx)+c (D) x(cos(logx)-sin(logx))+c

If intxsinx\ dx=-xcosx+alpha, then alpha is equal to (a) sinx+C (b) cosx+C (c) C (d) none of these