Home
Class 12
MATHS
int(10 x^9+10 x^x(log)(e^(10))dx)/(x^(10...

`int(10 x^9+10 x^x(log)_(e^(10))dx)/(x^(10)+10^x)`equals(A) `10^x-x^(10)+C` (B) `10^x+x^(10)+C`(C) `(10^x-x^(10))^(-1)+C` (D) `log(10^x+x^(10))+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2"log"_(10)x) = 1000x , then x equals to

intdx/(x(1+x^10))= (A) 1/10 log((1+x^10)/x^10)+c (B) 1/10 log(x^10/(1+x^10))+c (C) 1/(1+x^10)^2+c (D) none of these

If "log"_(10) x =y, " then log"_(10^(3))x^(2) equals

10^x+10^x=10^4

Evaluate: int(10x^9+10^x(log)_e 10)/(10^x+x^(10))dx

lim_(xrarroo)((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10)) is equal to (a) 0 (b) 1 (c) 10 (d) 100

Solve |x-1|^((log_(10) x)^2-log_(10) x^2=|x-1|^3

In the expansion off (1+x)^(10)=.^(10)C_(0)+.^(10)C_(1)x+.^(10)C_(2)x^(2)+ . . .+.^(10)C_(10)x^(10) , then value of 528[(.^(10)C_(0))/(2)-(.^(10)C_(1))/(3)+(.^(10)C_(2))/(4)-(.^(10)C_(3))/(5)+ . . .+(.^(10)C_(10))/(12)] is equal to________.

Prove that ^10 C_1(x-1)^2-^(10)C_2(x-2)^2+^(10)C_3(x-3)^2+-^(10)C_(10)(x-10)^2=x^2

lim_(xtooo) ((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10)) is equal to