Home
Class 12
MATHS
intdx/(x(1+x^10))= (A) 1/10 log((1+x^10)...

`intdx/(x(1+x^10))=` (A) `1/10 log((1+x^10)/x^10)+c` (B) `1/10 log(x^10/(1+x^10))+c` (C) `1/(1+x^10)^2+c` (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^3+1/(x^3)=110 , then x+1/x=? (a) 5 (b) 10 (c) 15 (d) none of these

int_0^pi dx/(1+10^(cosx))+int_(-1)^1 log((2-x)/(2+x))dx= (A) pi/2 (B) -pi (C) 0 (D) none of these

int(10 x^9+10 x^x(log)_(e^(10))dx)/(x^(10)+10^x) equals(A) 10^x-x^(10)+C (B) 10^x+x^(10)+C (C) (10^x-x^(10))^(-1)+C (D) log(10^x+x^(10))+C

int(x dx)/((x-1)(x-2) equal(A) log|((x-1)^2)/(x-2)|+C (B) log|((x-2)^2)/(x-1)|+C (C) log|((x-1)^2)/(x-2)|+C (D) log|(x-1)(x-2)|+C

If sum_(i=1)^10 sin^-1 x_i = 5pi then sum_(i=1)^10 x_i^2 = (A) 0 (B) 5 (C) 10 (D) none of these

Find x, if : (i) log_(10) (x + 5) = 1 (ii) log_(10) (x + 1) + log_(10) (x - 1) = log_(10) 11 + 2 log_(10) 3

If (1)/("log"_(x)10) = (2)/("log"_(a)10)-2 , then x =

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

The derivative of (log)_(10)x w.r.t. x^2 is equal to 1/(2x^2)log_e 10 (b) 2/(x^2)(log)_(10)e 1/(2x^2)(log)_(10)e (d) none of these

int(log(x+1)-log x)/(x(x+1))dx= (A) log(x-1)log x+(1)/(2)(log x-1)^(2)-(1)/(2)(log x)^(2)+c (B) (1)/(2)(log(x+1))^(2)+(1)/(2)(log x)^(2)-log(x+1)log x+c (C) -(1)/(2)(log(x+1)^(2))-(1)/(2)(log x)^(2)+log x*log(x+1)+c (D) [log(1+(1)/(x))]^(2)+c