Home
Class 12
MATHS
intdx/(cosx-sinx) is equal to (A) 1/sqrt...

`intdx/(cosx-sinx)` is equal to (A) `1/sqrt(2)log|tan(x/2-(3x)/8)|+C` (B) `1/sqrt(2)log|cot(x/2)|+C` (C) `1/sqrt(2)log|tan(x/2-pi/6)|+C` (D) `1/sqrt(2)log|tan(x/2+(3pi)/8)|+C`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Choose the correct answer intsqrt(1+x^2)dx is equal to(A) x/2sqrt(1+x^2)+1/2log|(x+sqrt(x+x^2))|+C (B) 2/3(1+x^2)^(3/2)+C (C) 2/3x(1+x^2)^(3/2)+C (D) (x^2)/2sqrt(1+x^2)+1/2x^2log|x+sqrt(1+x^2)|+C

If I=int(sqrt(cotx)-sqrt(tanx))dx ,t h e nIe q u a l sqrt(2)"log"(sqrt(tanx)-sqrt(cotx))+C sqrt(2)log|sinx|cosx+sqrt(sin2x)|+C sqrt(2)log|s inx-cosx+sqrt(2)s inxcosx|+C sqrt(2)log|sin(x+pi/4)+sqrt(2)sinxcosx|+C

The integral int (xdx)/(2-x^2+sqrt(2-x^2) equals: (A) log|1+sqrt(2+x^2)|+C (B) xlog|1-sqrt(2+x^2)|+C (C) -log|1+sqrt(2-x^2)|+C (D) xlog|1-sqrt(2-x^2)|+C

Choose the correct answer intsqrt(x^2-8x+7)dx (A) 1/2(x-4)sqrt(x^2-8x+7)+9log|x-4+sqrt(x^2-8x+7)|+C (B) 1/2(x+4)sqrt(x^2-8x+7)+9log|x+4+sqrt(x^2-8x+7)|+C (C) 1/2(x-4)sqrt(x^2-8x+7)-3sqrt(2)log|x-4+sqrt(x^2-8x+7)|+C (D) 1/2(x-4)sqrt(x^2-8x+7)-(9/2)log|x-4+sqrt(x^2-8x+7)|+C

Choose the correct answer intsqrt(x^2-8x+7)dx (A) 1/2(x-4)sqrt(x^2-8x+7)+9log|x-4+sqrt(x^2-8x+7)|+C (B) 1/2(x+4)sqrt(x^2-8x+7)+9log|x+4+sqrt(x^2-8x+7)|+C (C) 1/2(x-4)sqrt(x^2-8x+7)-3sqrt(2)log|x-4+sqrt(x^2-8x+7)|+C (D) 1/2(x-4)sqrt(x^2-8x+7)-

"tan"(cos^(-1)x) is equal to x/(1+x^2) b. (sqrt(1+x^2))/x c. (sqrt(1-x^2))/x d. sqrt(1-2x)

int1/(1+sqrt(x))"dx" is equal to a. 2sqrt(x)+2ln|1+sqrt(x)|+c b. 2sqrt(x)-2ln|1+sqrt(x)|+c c. 2sqrt(x)-2ln|1-sqrt(x)|+c d. 2sqrt(x)-ln|1+sqrt(x)|+c

int1/(1+sqrt(x))"dx" is equal to 2sqrt(x)+2ln|1+sqrt(x)|+c b. 2sqrt(x)-2ln|1+sqrt(x)|+c c. 2sqrt(x)-2ln|1-sqrt(x)|+c d. 2sqrt(x)-ln|1+sqrt(x)|+c

If tan^(-1)x+2cot^(-1)x=(2pi)/3, then x , is equal to (a) (sqrt(3)-1)/(sqrt(3)+1) (b) 3 (c) sqrt(3) (d) sqrt(2)

The value of int(sinx+cosx)/(sqrt(1-sin2x))\ dx is equal to (a) sqrt(sin2x)+C (b) sqrt(cos2x)+C (c) +-(sinx-cosx)+C (d) +-log(sinx-cosx)+C